A One-Dimensional Continuum Elastic Model for Membrane-Embedded Gramicidin Dimer Dissociation
نویسندگان
چکیده
Membrane elastic properties, which are subject to alteration by compounds such as cholesterol, lipid metabolites and other amphiphiles, as well as pharmaceuticals, can have important effects on membrane proteins. A useful tool for measuring some of these effects is the gramicidin A channels, which are formed by transmembrane dimerization of non-conducting subunits that reside in each bilayer leaflet. The length of the conducting channels is less than the bilayer thickness, meaning that channel formation is associated with a local bilayer deformation. Electrophysiological studies have shown that the dimer becomes increasingly destabilized as the hydrophobic mismatch between the channel and the host bilayer increases. That is, the bilayer imposes a disjoining force on the channel, which grows larger with increasing hydrophobic mismatch. The energetic analysis of the channel-bilayer coupling is usually pursued assuming that each subunit, as well as the subunit-subunit interface, is rigid. Here we relax the latter assumption and explore how the bilayer junction responds to changes in this disjoining force using a simple one-dimensional energetic model, which reproduces key features of the bilayer regulation of gramicidin channel lifetimes.
منابع مشابه
New Continuum Approaches for Determining Protein-Induced Membrane Deformations.
The influence of the membrane on transmembrane proteins is central to a number of biological phenomena, notably the gating of stretch activated ion channels. Conversely, membrane proteins can influence the bilayer, leading to the stabilization of particular membrane shapes, topological changes that occur during vesicle fission and fusion, and shape-dependent protein aggregation. Continuum elast...
متن کاملGating gramicidin channels in lipid bilayers: reaction coordinates and the mechanism of dissociation.
The dissociation of gramicidin A (gA) channels into monomers is the simplest example of a channel gating process. The initial steps in this process are studied via a computational model that simulates the reaction coordinate for dimer-monomer dissociation. The nonbonded interaction energy between the monomers is determined, allowing for their free relative translational and rotational motion. L...
متن کاملFree energy calculations of gramicidin dimer dissociation.
Molecular dynamics simulations, combined with umbrella sampling, is used to study how gramicidin A (gA) dimers dissociate in the lipid bilayer. The potential of mean force and intermolecular potential energy are computed as functions of the distance between center of masses of the two gA monomers in two directions of separation: parallel to the bilayer surface and parallel to the membrane norma...
متن کاملLipid nanodomains change ion channel function.
Signaling proteins and neurotransmitter receptors often associate with saturated chain and cholesterol-rich domains of cell membranes, also known as lipid rafts. The saturated chains and high cholesterol environment in lipid rafts can modulate protein function, but evidence for such modulation of ion channel function in lipid rafts is lacking. Here, using raft-forming model membrane systems con...
متن کاملAssessing smectic liquid-crystal continuum models for elastic bilayer deformations.
For four decades, since W. Helfrich's pioneering study of smectic A liquid crystals in 1973, continuum elastic models (CEMs) have been employed as tools to understand the energetics of protein-induced lipid bilayer deformations. Among the assumptions underlying this use is that all relevant protein-lipid interactions can be included in the continuum representation of the protein-bilayer interac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011